Signetics

74LS364 Flip-Flop

Octal D Flip-Flop With 3-State Outputs Product Specification

Logic Products

FEATURES

- 8-bit positive edge-triggered register
- 3-State MOS compatible output buffers
- Common Clock input with hysteresis
- Common 3-State Output Enable control
- Independent register and 3-State buffer operation

DESCRIPTION

The '364 is an 8-bit edge-triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the Clock (CP) and Output Enable (OE) control gates.

The register is fully edge triggered. The state of each D input, one set-up time before the LOW-to-HIGH clock transi-

TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74LS364	50MHz	42mA

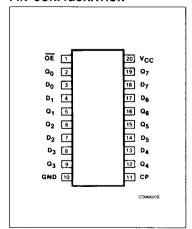
ORDERING CODE

PACKAGES	COMMERCIAL RANGE $V_{CC} = 5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$
Plastic DIP	N74LS364N

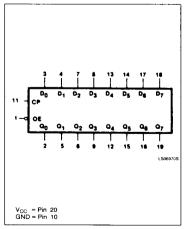
NOTE

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

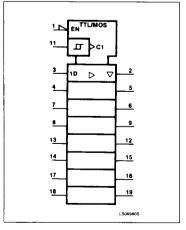
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE


PINS	DESCRIPTION	74LS
All	Inputs	1LSul
All	Outputs	30LSul

NOTE:


A 74LS unit load (LSul) is $20\mu A I_{1H}$ and $-0.4mA I_{1L}$.

tion, is transferred to the corresponding flip-flop's Q output. The clock buffer has about 400mV of hysteresis built in to help minimize problems that signal and ground noise can cause on the clocking operation.


PIN CONFIGURATION

LOGIC SYMBOL

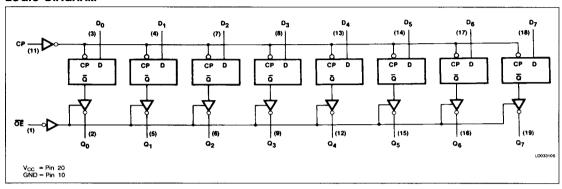
LOGIC SYMBOL (IEEE/IEC)

December 4, 1985

5-517

853-0479 81500

Flip-Flop


74LS364

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The output HIGH level differs from the normal 3-State buffer by driving the output about 1V closer to V_{CC}, or to over 3.5V at minimum V_{CC}. This

feature makes these devices ideal for driving MOS memories or microprocessors with thresholds of 2.4V to 3.5V. The active LOW Output Enable (OE) controls all eight 3-State buffers independent of the register operation. When OE is LOW, the data in the register

appears at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs are in the HIGH impedance "off" state, which means they will neither drive nor load the bus.

LOGIC DIAGRAM

MODE SELECT—FUNCTION TABLE

		INPUTS			OUTPUTS Q ₀ - Q ₇	
OPERATING MODES	ŌĒ	СР	D _n	INTERNAL REGISTER		
	L	1	1	L	L	
Load and read register	L	1	h	н	н	
	Н	1			(Z)	
Latch register and disable outputs	Н	1	h	н	(Z)	

- H = HIGH voltage level
- h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
- = LOW voltage level
- i = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
- (Z) = HIGH impedance "off" state
- 1 = LOW-to-HIGH clock transition

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER		74LS	UNIT	
Vcc	Supply voltage	7.0	V	
V _{IN}	Input voltage	-0.5 to +7.0	٧	
In	Input current	-30 to +1	mA	
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	٧	
TA	Operating free-air temperature range	0 to 70	°C	

Flip-Flop 74LS364

RECOMMENDED OPERATING CONDITIONS

	242445	74LS			
PARAMETER		Min	Nom	Max	UNIT
Vcc	Supply voltage	4.75	5.0	5.25	V
V _{IH}	HIGH-level input voltage	2.0			V
V _{IL}	LOW-level input voltage			+0.8	V
liн	Input clamp current			-18	mA
l _{ОН}	HIGH-level output current			-2.6	mA
I _{OL}	LOW-level output current			24	mA
TA	Operating free-air temperature	0		70	°C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER				74LS364			
		TEST COM	TEST CONDITIONS ¹		Typ ²	Max	UNIT
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IH} = MIN,	V _{IL} = MAX, I _{OH} = MAX	3.65			٧
	LOW lovel output voltage	V _{CC} = MIN, V _{IH} = MIN,	I _{OL} = MAX		0.35	0.5	٧
V _{OL}	LOW-level output voltage	V _{IL} = MAX	I _{OL} = 12mA (74LS)		0.25	0.4	V
V _{IK}	input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$				-1.5	V
l _{OZH}	Off-state output current, HIGH-level voltage applied	V _{CC} = MAX, V _{IL} = MAX, V _O = 3.65V				20	μΑ
l _{OZL}	Off-state output current, LOW-level voltage applied	$V_{CC} = MAX$, $V_{IH} = MIN$, $V_{O} = 0.4V$				-20	μΑ
f _L	Input current at maximum input voltage	V _{CC} = MAX, V _I = 7.0V				0.1	mA
I _{IH}	HIGH-level input current	$V_{CC} = MAX$, $V_I = 2.7V$				20	μΑ
I _{IL}	LOW-level input current	$V_{CC} = MAX, V_I = 0.4V$	V _{CC} = MAX, V _I = 0.4V			-0.4	mA
los	Short-circuit output current ³	V _{CC} = MAX		-30		-130	mA
Icc	Supply current (total)	$V_{CC} = MAX, \overline{OE} = 4.5V$			42	70	mA

NOTES

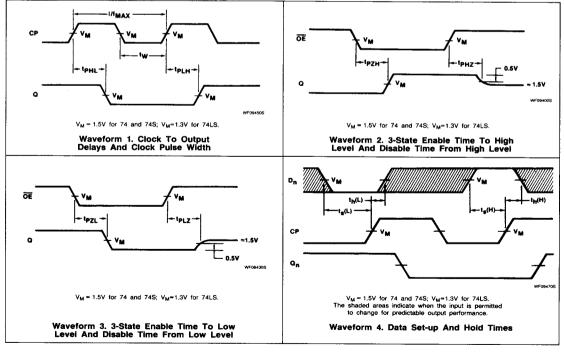
- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. I_{OS} is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

Flip-Flop

74LS364

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

			74LS			
PARAMETER		TEST CONDITIONS	$C_L = 45pF$, $R_L = 667\Omega$		UNIT	
			Min	Max		
f _{MAX}	Maximum clock frequency	Waveform 1	35		MHz	
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		33 34	ns	
t _{PZH}	Enable time to HIGH level	Waveform 2		28	ns	
t _{PZL}	Enable time to LOW level	Waveform 3		36	ns	
t _{PHZ}	Disable time from HIGH level	Waveform 2, C _L = 5pF		18	ns	
t _{PLZ}	Disable time from LOW level	Waveform 3, C _L = 5pF		24	ns	

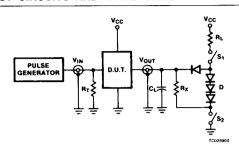

NOTE:

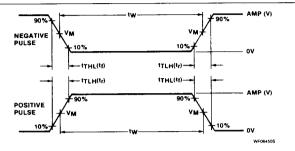
Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_t, t_{fi} pulse width or duty cycle.

AC SET-UP REQUIREMENTS $T_A = 25$ °C, $V_{CC} = 5.0V$

PARAMETER		PARAMETER TEST CONDITIONS		74LS		
		TEST CONDITIONS	Min	Max	UNIT	
tw	Clock pulse width	Waveform 1	15		ns	
ts	Set-up time, data to clock	Waveform 4	20		ns	
th	Hold time, data to clock	Waveform 4	0		ns	

AC WAVEFORMS


December 4, 1985


5-520

Flip-Flop

74LS364

TEST CIRCUITS AND WAVEFORMS

 $V_M = 1.3V$ for 74LS; $V_M = 1.5V$ for all other TTL families. Input Pulse Definition

Test Circuit For 3-State Outputs

SWITCH POSITION

TEST	SWITCH 1	SWITCH 2
t _{PZH}	Open	Closed
tpzL	Closed	Open
t _{PHZ}	Closed	Closed
t _{PLZ}	Closed	Closed

DEFINITIONS R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value.

C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

RT = Termination resistance should be equal to ZOUT of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent. $R_X = 1 k \Omega$ for 74, 74S, $R_X = 5 k \Omega$ for 74LS.

 t_{TLH} , t_{THL} Values should be less than or equal to the table entries.

	IN	PUT PULSE	REQUIREME	NTS	
FAMILY	Amplitude	Rep. Rate	Pulse Width	t _{TLH}	t _{THL}
74	3.0V	1MHz	500ns	7ns	7ns
74LS	3.0V	1MHz	500ns	15ns	6ns
74S	3.0V	1MHz	500ns	2.5ns	2.5ns