# Advance Information

# Intelligent Power Module (IPM) 600 V, 10 A

The STK541UC62A-E is a fully-integrated inverter power stage consisting of a high-voltage driver, six IGBT's and a thermistor, suitable for driving permanent magnet synchronous (PMSM) motors, brushless-DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a 3-phase bridge.

The power stage has a full range of protection functions including cross-conduction protection, external shutdown and under-voltage lockout functions. Output stage uses IGBT/FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive.

#### **Features**

- Three-Phase 10 A / 600 V IGBT Module With Integrated Drivers
- Typical Values (Upper Side at 10 A):  $V_{CE}(sat) = 1.4 \text{ V}, V_F = 1.3 \text{ V}$
- 62.0 mm x 21.8 mm Single In-line Package
- Cross-Conduction Protection
- Integrated Bootstrap Diodes and Resistors
- These Devices are Pb-Free and are RoHS Compliant

#### Certification

• UL1557 (File Number: E339285)

#### **Typical Applications**

- Industrial Pumps
- Industrial Fans
- Industrial Automation
- Heat Pumps, Home Appliances



#### ON Semiconductor®

www.onsemi.com



SIP23 62x21.8 CASE 127VB

#### MARKING DIAGRAM



STK541UC62A = Specific Device Code

A = Year

B = Month

C = Production Plant D = Ordering Number

Device Marking in on Package Underside

#### **ORDERING INFORMATION**

See detailed ordering, marking and shipping information in the package dimensions section on page 13 of this data sheet.

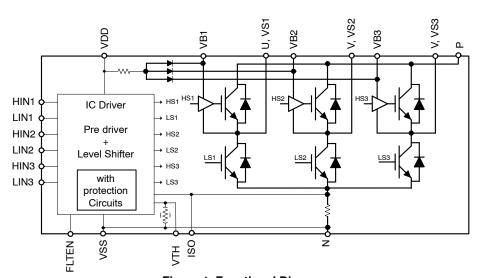



Figure 1. Functional Diagram

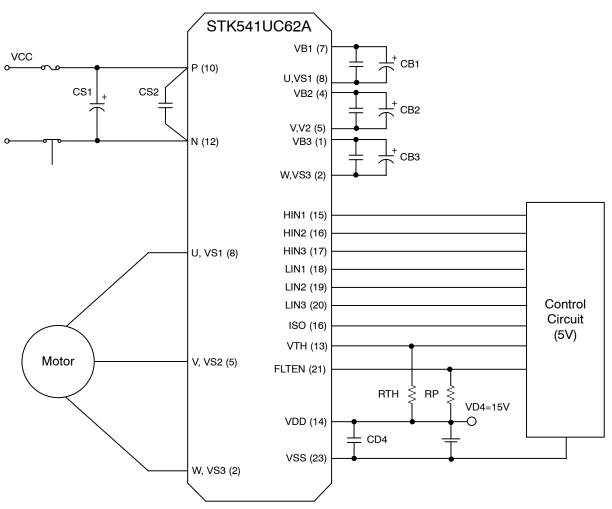



Figure 2. Application Schematic

#### **Function Description**

- 1. It is essential that wiring length between terminals in the snubber circuit be kept as short as possible to reduce the effect of surge voltages. Recommended value of "CS" is in the range of 0.1 to  $10~\mu F$ .
- 2. The "FLTEN" terminal (Pin 21) is I/O terminal; Fault output / Enable input. It is used to indicate an internal fault condition of the module and also can be used to disable the module operation.
- 3. Inside the IPM, a thermistor used as the temperature monitor for internal substrate is connected between VSS terminal and TH terminal therefore, an external pull up resistor connected between the TH terminal and an external power supply should be used.

- 4. The "ISO" terminal (Pin 22) is current monitor terminal. When the pull–down resister is used, please select it more than 5.6 k $\Omega$
- 5. As protection of IPM to the unusual current by a short circuit etc. it recommends installing shunt resistors and an over-current protection circuit outside. Moreover, for safety, a fuse on Vcc line is recommended.
- 6. Disconnection of terminals U, V, or W during normal motor operation will cause damage to IPM, use caution with this connection.
- 7. When input pulse width is less than 1 µs, an output may not react to the pulse. (Both ON signal and OFF signal)

This data shows the example of the application circuit, does not guarantee a design as the mass production set.

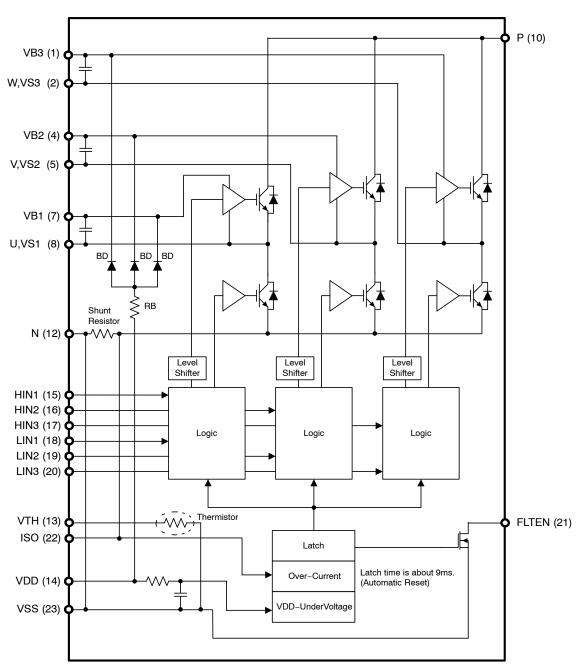



Figure 3. Simplified Block Diagram

**Table 1. PIN FUNCTION DESCRIPTION** 

| Pin # | Label  | Description                                         |
|-------|--------|-----------------------------------------------------|
| 1     | VB3    | High Side Floating Supply Voltage 3                 |
| 2     | W, VS3 | Output 3 - High Side Floating Supply Offset Voltage |
| 4     | VB2    | High Side Floating Supply Voltage 2                 |
| 5     | V, VS2 | Output 2 - High Side Floating Supply Offset Voltage |
| 7     | VB1    | High Side Floating Supply Voltage 1                 |
| 8     | U, VS1 | Output 1 – High Side Floating Supply Offset Voltage |
| 10    | Р      | Positive Bus Input Voltage                          |
| 12    | N      | Negative Bus Input Voltage                          |
| 13    | VTH    | Temperature Feedback                                |
| 14    | VDD    | +15 V Main Supply                                   |
| 15    | HIN1   | Logic Input High Side Gate Driver - Phase U         |
| 16    | HIN2   | Logic Input High Side Gate Driver - Phase V         |
| 17    | HIN3   | Logic Input High Side Gate Driver - Phase W         |
| 18    | LIN1   | Logic Input Low Side Gate Driver - Phase U          |
| 19    | LIN2   | Logic Input Low Side Gate Driver - Phase V          |
| 20    | LIN3   | Logic Input Low Side Gate Driver - Phase W          |
| 21    | FLTEN  | Fault output and Enable                             |
| 22    | ISO    | Current monitor output                              |
| 23    | VSS    | Negative Main Supply                                |

<sup>1.</sup> Pins 3, 6, 9, 11 are not present.

Table 2. ABSOLUTE MAXIMUM RATINGS at  $T_C = 25$ °C, (Note 2)

| Symbol                     | Parameter | Min                                                | Max         | Unit |
|----------------------------|-----------|----------------------------------------------------|-------------|------|
| Supply voltage             | VCC       | P to N, surge < 500 V (Notes 3)                    | 450         | V    |
| Collector-emitter voltage  | VCE       | P to U, V, W or U, V, W, to N                      | 600         | V    |
|                            |           | P,N,U,V,W terminal current                         | ±10         | Α    |
| Output current             | lo        | P,N,U,V,W terminal current,<br>Tc = 100°C          | ±5          | А    |
| Output peak current        | lop       | P,N,U,V,W terminal current, P.W. = 1ms             | ±20         | Α    |
| Pre-driver voltage         | VD1,2,3,4 | VB1 to U, VB2 to V, VB3 to W, VDD to VSS (Notes 4) | 20          | V    |
| Input signal voltage       | VIN       | HIN1, 2, 3, LIN1, 2, 3                             | -0.3 to 7   | V    |
| FLTEN terminal voltage     | VFLTEN    | FLTEN terminal                                     | -0.3 to VDD | V    |
| Maximum power dissipation  | Pd        | IGBT per 1 channel                                 | 22          | W    |
| Junction temperature       | Tj        | IGBT, FRD, Pre-Driver IC                           | 150         | °C   |
| Storage temperature        | Tstg      |                                                    | -40 to +125 | °C   |
| Operating case temperature | Tc        | IPM case                                           | -40 to +100 | °C   |
| Tightening torque          |           | A screw part (Notes 5)                             | 0.9         | Nm   |
| Withstand voltage          | Vis       | 50 Hz sine wave AC 1 minute (Notes 6)              | 2000        | VRMS |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

- Operating parameters.
- Surge voltage developed by the switching operation due to the wiring inductance between P and N terminal.
   VD1=VB1 to U, VD2=VB2 to V, VD3=VB3 to W, VD4=VDD to VSS terminal voltage.
- 5. Flatness of the heat–sink should be less than –50  $\mu m$  to +100  $\mu m$ .
- 6. Test conditions : AC2500V, 1 second7. Reference voltage is "VSS" terminal voltage unless otherwise specified.

Table 3. RECOMMENDED OPERATING RANGES (at  $T_C = 25^{\circ}C$ )

| Characteristic              | ic Symbol Conditions |                                             | Min  | Тур | Max  | Unit |
|-----------------------------|----------------------|---------------------------------------------|------|-----|------|------|
| Supply voltage              | V <sub>CC</sub>      | P to N                                      | 0    | 280 | 450  | V    |
| Dro driver cumply veltere   | VD1, 2, 3            | VB1 to U, VB2 to V, VB3 to W                | 12.5 | 15  | 17.5 | V    |
| Pre-driver supply voltage   | VD4                  | V <sub>DD</sub> to V <sub>SS</sub> (Note 8) | 13.5 | 15  | 16.5 | V    |
| ON-state input voltage      | VIN(ON)              | HIN1,HIN2,HIN3,                             | 0    | -   | 0.3  | V    |
| OFF-state input voltage     | VIN(OFF)             | LIN1,LIN2,LIN3                              | 3.0  | -   | 5.0  | V    |
| PWM frequency               | fPWM                 |                                             | 1.0  |     | 20   | kHz  |
| Dead time                   | DT                   | Turn-off to turn-on (external)              | 2.0  | -   | -    | μs   |
| Allowable input pulse width | PWIN                 | ON and OFF                                  | 1.0  | _   | _    | μs   |
| Package mounting torque     |                      | 'M3' type screw                             | 0.6  |     | 0.9  | Nm   |

<sup>8.</sup> Pre-drive power supply (VD4 =  $15\pm1.5$  V) must have the capacity of Io = 20 mA (DC), 0.5 A (Peak).

Table 4. ELECTRICAL CHARACTERISTICS  $T_C = 25$  °C, VD1, VD2, VD3, VD4 = 15 V (Note 9)

| Parameter                         | Symbol                                          | Test Condit         | ion                     | Min | Тур    | Max   | Unit |
|-----------------------------------|-------------------------------------------------|---------------------|-------------------------|-----|--------|-------|------|
| Power output section              |                                                 |                     |                         | •   |        | •     |      |
| Collector-emitter leakage current | V <sub>CE</sub> = 600 V                         |                     | I <sub>CE</sub>         | -   | _      | 100   | μΑ   |
| Bootstrap diode reverse current   | VR(BD) = 600 V                                  |                     | IR(BD)                  | _   | _      | 100   | μΑ   |
|                                   | 10 A Ti 0500                                    | Upper side          |                         | _   | 1.4    | 2.3   | V    |
| Collector to emitter saturation   | Ic = 10 A, Tj = 25°C                            | Lower side (Note 9) |                         | _   | 1.7    | 2.6   | V    |
| voltage                           | 54 Ti 1000                                      | Upper side          | ─ V <sub>CE</sub> (sat) | _   | 1.3    | _     | V    |
|                                   | Ic = 5A, Tj = 100°C                             | Lower side (Note 9) |                         | _   | 1.6    | _     | V    |
|                                   | UE T                                            | Upper side          |                         | _   | 1.3    | 2.2   | V    |
| <b>.</b>                          | IF = 10 A, Tj = 25°C                            | Lower side (Note 9) |                         | _   | 1.6    | 2.5   | V    |
| Diode forward voltage             | LE - 1 T                                        | Upper side          | VF                      | _   | 1.2    | _     | V    |
|                                   | IF = 5 A, Tj = 100°C                            | Lower side (Note 9) |                         | _   | 1.5    | -     | V    |
| Junction to case thermal          | IGBT                                            | 1                   | θj-c(T)                 | _   | -      | 5.5   |      |
| resistance                        | FRD                                             |                     | θj-c(D)                 | _   | _      | 6.5   | °C/W |
| Switching Character               |                                                 |                     | •                       |     |        | •     |      |
| O Malatan Para                    | lo = 10 A<br>Inductive load                     |                     | t ON                    | 0.2 | 0.4    | 1.1   | μs   |
| Switching time                    |                                                 |                     | t OFF                   | _   | 0.5    | 1.2   | μs   |
| Turn-on switching loss            | Ic=5 A, P = 300 V,                              |                     | Eon                     | _   | 200    | _     | μJ   |
| Turn-off switching loss           | $V_{DD} = 15 \text{ V}, L = 3.9 \text{ m}$      | Н                   | Eoff                    | _   | 130    | _     | μJ   |
| Total switching loss              | Tc = 25°C                                       |                     | Etot                    | _   | 330    | _     | μJ   |
| Turn-on switching loss            | Ic = 5 A, P = 300 V,                            |                     | Eon                     | _   | 240    | _     | μJ   |
| Turn-off switching loss           | $V_{DD} = 15 \text{ V}, L = 3.9 \text{ m}$      | Н                   | Eoff                    | _   | 160    | _     | μJ   |
| Total switching loss              | Tc = 100°C                                      |                     | Etot                    | -   | 400    | _     | μJ   |
| Diode reverse recovery energy     | I <sub>F</sub> = 5 A, P = 400 V, V <sub>I</sub> | nn = 15 V,          | Erec                    | _   | 17     | _     | μJ   |
| Diode reverse recovery time       | L = 0.5 mH, Tc = 100°                           | C                   | Trr                     | _   | 62     | _     | ns   |
| Reverse bias safe operating area  | lo = 20°, VCE = 450 V                           |                     | RBSOA                   |     | Full S | quare |      |
| Short circuit safe operating area | VCE = 400 V, Tc=100°C                           |                     | SCSOA                   | 4.0 | -      | _     | μs   |
| Control (Pre-driver) section      |                                                 |                     |                         |     |        |       |      |
| Dro driver never dissinsting      | VD1,2,3 = 15 V                                  |                     | ID                      | -   | 0.08   | 0.4   | A    |
| Pre-driver power dissipation      | VD4 = 15 V                                      |                     | ID                      | _   | 1.6    | 4.0   | mA   |

Table 4. ELECTRICAL CHARACTERISTICS  $T_C = 25$ °C, VD1, VD2, VD3, VD4 = 15 V (Note 9)

| High level Input voltage                                                 |                                 | Vin H                                      | 2.5  | _    |      | V  |
|--------------------------------------------------------------------------|---------------------------------|--------------------------------------------|------|------|------|----|
| Low level Input voltage                                                  | HIN1,HIN2,HIN3,                 | Vin L                                      | _    | _    | 0.8  | V  |
| Input threshold voltage hysteresis                                       | LIN1,LIN2,LIN3 to VSS           | Vinth(hys)                                 | 0.5  | 0.8  | _    | V  |
| Logic 1 input leakage current                                            | VIN = +3.3V                     | I <sub>IN+</sub>                           | 76   | 118  | 160  | μΑ |
| Logic 0 input leakage current                                            | VIN = 0 V                       | I <sub>IN-</sub>                           | 97   | 150  | 203  | μΑ |
| FLTEN terminal sink current                                              | FAULT:ON / VFLTEN = 0.1 V       | IoSD                                       | _    | 2.0  | -    | mA |
| FLTEN clearance delay time                                               | From time fault condition clear | FLTCLR                                     | 6.0  | 9.0  | 12.0 | ms |
| FLTEN Threshold                                                          | VEN rising                      | VEN+                                       | 2.5  |      | -    | V  |
| FLIEN Threshold                                                          | VEN falling                     | VEN-                                       | -    | -    | 0.8  | V  |
| V <sub>CC</sub> and V <sub>BS</sub> supply undervoltage protection reset |                                 | V <sub>CCUV+</sub><br>V <sub>BSUV+</sub>   | 10.5 | 11.1 | 11.7 | V  |
| V <sub>CC</sub> and V <sub>BS</sub> supply undervoltage protection set   |                                 | V <sub>CCUV</sub> -<br>V <sub>BSUV</sub> - | 10.3 | 10.9 | 11.5 | V  |
| V <sub>CC</sub> and V <sub>BS</sub> supply undervoltage hysteresis       |                                 | V <sub>CCUVH</sub><br>V <sub>BSUVH</sub>   | 0.14 | 0.2  |      | V  |
| Output level for current monitor                                         | lo = 10 A                       | ISO                                        | 0.30 | 0.33 | 0.36 | V  |
|                                                                          |                                 |                                            |      |      |      |    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9. Reference voltage is "VSS" terminal voltage unless otherwise specified.

#### **APPLICATIONS INFORMATION**

#### **Input / Output Timing Chart**

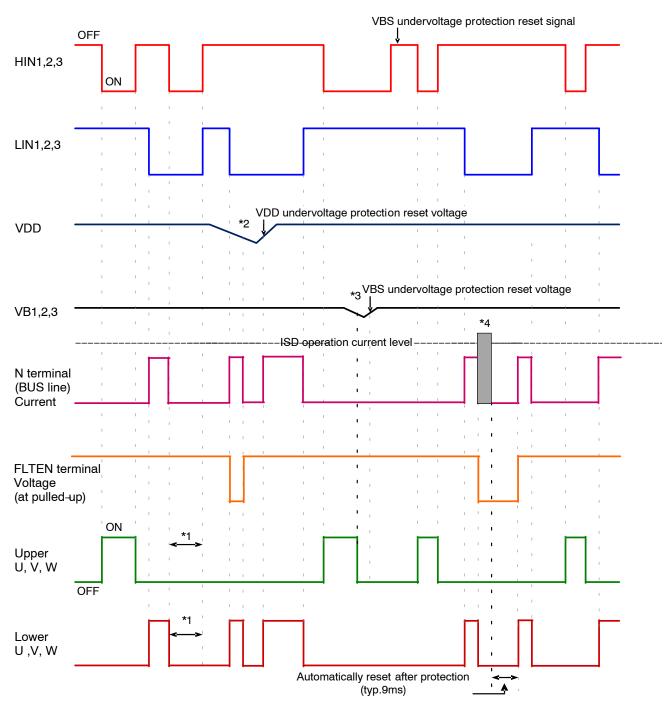



Figure 4. Input/Output Timing Chart

#### NOTES:

- 1. Shows the prevention of shoot–thru via control logic, however, more dead time must be added to account for switching delay externally.
- 2. When VDD decreases all gate output signals will go low and cut off all 6 IGBT outputs. When VDD rises the operation will resume immediately.
- 3. When the upper side voltage at VB1, VB2 and VB3 drops only the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gate voltage rises.
- 4. In case of over current detection, all IGBT's are turned off and the FAULT output is asserted. Normal operation resumes in typ. 9ms after the over current condition is removed.

**Table 5. LOGIC LEVEL TABLE** 

|     | INPUT |     |                |               |                |       |
|-----|-------|-----|----------------|---------------|----------------|-------|
| HIN | LIN   | OCP | High side IGBT | Low side IGBT | U,V,W          | FLTEN |
| Н   | L     | OFF | OFF            | ON            | Р              | OFF   |
| L   | Н     | OFF | ON             | OFF           | N              | OFF   |
| L   | L     | OFF | OFF            | OFF           | High Impedance | OFF   |
| Н   | Н     | OFF | OFF            | OFF           | High Impedance | OFF   |
| Х   | Х     | ON  | OFF            | OFF           | High Impedance | ON    |

**Table 6. THERMISTOR CHARACTERISTICS** 

| Parameter               | Symbol           | Condition  | Min  | Тур  | Max  | Unit |
|-------------------------|------------------|------------|------|------|------|------|
| Resistance              | R <sub>25</sub>  | Tc = 25°C  | 99   | 100  | 101  | kΩ   |
| Resistance              | R <sub>100</sub> | Tc = 100°C | 5.12 | 5.38 | 5.66 | kΩ   |
| B-Constant (25 to 50°C) | В                |            | 4160 | 4250 | 4335 | K    |
| Temperature Range       |                  |            | -40  | _    | +125 | °C   |

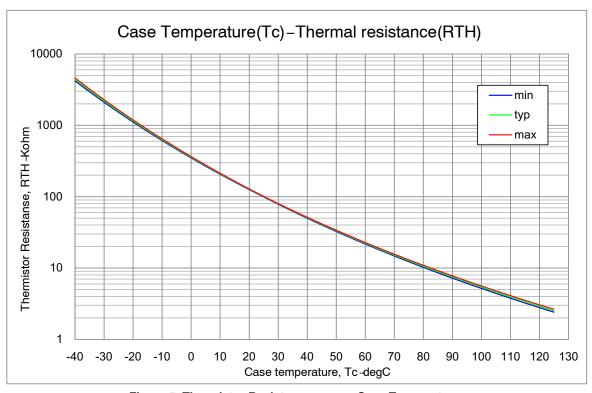



Figure 5. Thermistor Resistance versus Case Temperature

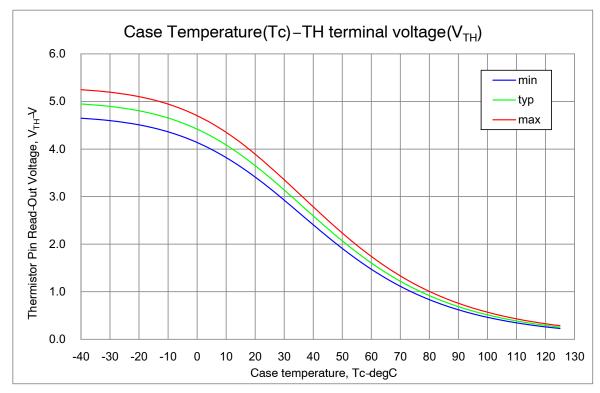



Figure 6. Thermistor Voltage versus Case Temperature Condition: Pull-up resistor = 4.7 kphm, Pull-up voltage of TH = 5 V

#### **Fault Output**

The FLTEN terminal is an open drain output requiring a pull–up resistor. If the pull–up voltage is 5 V, use a pull–up resistor with a value of 6.8 k $\Omega$  or higher. If the pull–up voltage is 15 V, use a pull–up resistor with a value of 20 k $\Omega$  or higher. The FAULT output is triggered if there is a VDD under voltage or an overcurrent condition.

The terminal has a function of enable output, this pin is used to enable or shut down the built-in driver. If the voltage on the FLTEN pin rises above the ENABLE ON-state voltage, the output drivers are enabled. If the voltage on the FLTEN pin falls below the ENABLE OFF-state voltage, the drivers are disabled.

#### **Under Voltage Lockout Protection.**

If VDD goes below the VDD supply under voltage lockout falling threshold, the FAULT output is switched on. The FAULT output stays on until VDD rises above the VDD supply under voltage lockout rising threshold. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN input before enabling the driver for the HIN signal.

#### **Overcurrent Protection**

Over current protection is implemented by measuring the voltage across a shunt resistor to negative supply terminal. In case of an OCP fault the gate drivers are shut down internally and the external Fault signal becomes active (low).

Once activated by a fault condition the FAULT signal output returns to inactive (and is pulled high by the external resistor) when the fault condition is over and the fault clear time (FLTCLR) has passed. This implies that the system microcontroller needs to disable all input signals to the module by driving them low upon detection of a fault condition. An additional fuse is recommended to protect against system level or abnormal over-current fault conditions.

#### Capacitors on High Voltage and V<sub>DD</sub> supplies

Both the high voltage and  $V_{DD}$  supplies require an electrolytic capacitor and an additional high frequency capacitor.

#### Minimum input pulse width

When input pulse width is less than 1.0 µs, an output may not react to the pulse. (Both ON signal and OFF signal)

#### Calculation of bootstrap capacitor value

The bootstrap capacitor value CB is calculated using the following approach. The following parameters influence the choice of bootstrap capacitor:

- VBS : Bootstrap power supply.
   15 V is recommended.
- QG: Total gate charge of IGBT at VBS = 15 V. 89nC

- UVLO: Falling threshold for UVLO. Specified as 12 V.
- $ID_{MAX}$ : High side drive consumption current. Specified as  $400 \mu A$
- t<sub>ONMAX</sub>: Maximum ON pulse width of high side IGBT.

#### Capacitance calculation formula

CB = (QG + IDMAX \* tONMAX) / (VBS - UVLO)

CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47  $\mu$ F, however, the value needs to be verified prior to production. When not using the bootstrap circuit, each high side driver power supply requires an external independent power supply.

The internal bootstrap circuit uses a MOSFET. The turn on time of this MOSFET is synchronized with the turn on of the low side IGBT. The bootstrap capacitor is charged by turning on the low side IGBT.

If the low side IGBT is held on for a long period of time (more than one second for example), the bootstrap voltage on the high side MOSFET will slowly discharge.

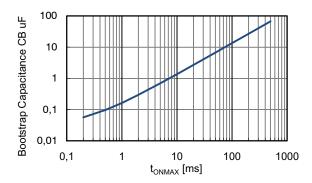



Figure 7. Bootstrap capacitance versus tONMAX

**Table 7. MOUNTING INSTRUCTIONS** 

| Item      | Recommended Condition                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pitch     | $56.0 \pm 0.1$ mm (Please refer to Package Outline Diagram)                                                                                                                       |
| Screw     | Diameter : M3<br>Screw head types: pan head, truss head, binding head                                                                                                             |
| Washer    | Plane washer The size is D: 7 mm, d: 3.2 mm and t: 0.5 mm JIS B 1256                                                                                                              |
| Heat sink | Material: Aluminum or Copper Warpage (the surface that contacts IPM) : –50 to +100 μm Screw holes must be countersunk No contamination on the heat sink surface that contacts IPM |
| Torque    | Final tightening : 0.6 to 0.9 Nm Temporary tightening : 20 to 30 % of final tightening                                                                                            |
| Grease    | Silicone grease Thickness : 100 to 200 μm Uniformly apply silicone grease to whole back                                                                                           |

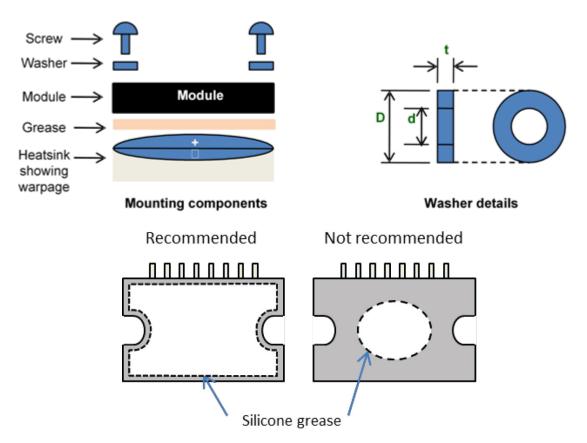



Figure 8. Module Mounting Details: Components; Washer Drawing; Need for Even Spreading of Thermal Grease

# • V<sub>CE</sub>(sat) (Test by pulse)

## • I<sub>CE</sub>

|   | U+ | V+ | W+ | U- | V- | W- |
|---|----|----|----|----|----|----|
| М | 10 | 10 | 10 | 8  | 5  | 2  |
| N | 8  | 5  | 2  | 12 | 12 | 12 |

|   | U(DB) | V(DB) | W(DB) |
|---|-------|-------|-------|
| М | 7     | 4     | 1     |
| N | 23    | 23    | 23    |

U+, V+, W+: High side phase U-, V-, W-: Low side phase

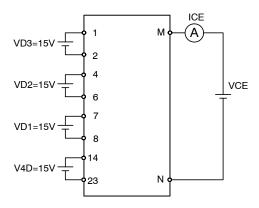



Figure 9. Test Circuit for ICE

# • V<sub>CE</sub>(sat) (Test by pulse)

|   | U+ | V+ | W+ | U- | V- | W- |
|---|----|----|----|----|----|----|
| М | 10 | 10 | 10 | 8  | 5  | 2  |
| N | 8  | 5  | 2  | 12 | 12 | 12 |
| m | 15 | 16 | 17 | 18 | 19 |    |

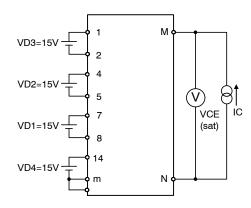



Figure 10. Test Circuit for V<sub>CE</sub> (sat)

# • V<sub>F</sub> (Test by pulse)

|   | U+ | V+ | W+ | U- | V- | W- |
|---|----|----|----|----|----|----|
| М | 10 | 10 | 10 | 8  | 5  | 2  |
| N | 8  | 5  | 2  | 12 | 12 | 12 |

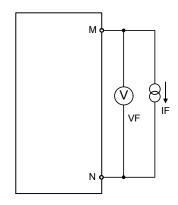



Figure 11. Test Circuit for  $V_{\text{CE}}$  (sat)

# • ID

|   | VD1 | VD2 | VD3 | VD4 |
|---|-----|-----|-----|-----|
| М | 7   | 4   | 1   | 14  |
| N | 8   | 5   | 2   | 23  |

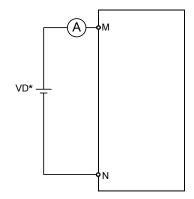
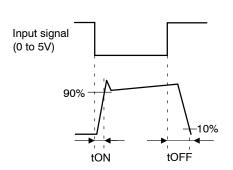




Figure 12. Test Circuit for ID

• Switching time (The circuit is a representative example of the low side U phase)



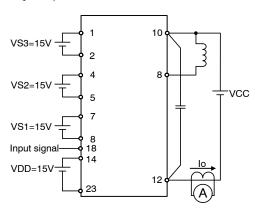
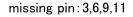
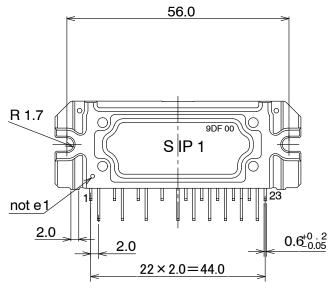
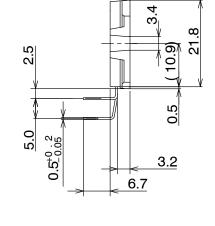
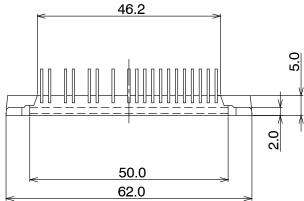



Figure 13. Switching Time Test Circuit


**Table 8. ORDERING INFORMATION** 


| Device        | Marking     | Package                    | Shipping      |
|---------------|-------------|----------------------------|---------------|
| STK541UC62A-E | STK541UC62A | SIP23 62x21.8<br>(Pb-Free) | 8 Unit / Tube |





SIP23 56x21.8 CASE 127BV ISSUE O

**DATE 30 APR 2012** 









| DOCUMENT NUMBER: | 98AON79788E   | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SIP23 56X21.8 |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales