Standard Rectifier Module
 PHASE OU'T

1~ Rectifier
$\mathrm{V}_{\text {RRM }}=1200 \mathrm{~V}$
$\mathrm{I}_{\text {DAV }}=100 \mathrm{~A}$
$\mathrm{I}_{\text {FSM }}=1500 \mathrm{~A}$

1~ Rectifier Bridge

Part number

VBO105-12NO7

NNN2873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For one phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: PWS-C

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Easy to mount with two screws
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Recommended replacement: VBO130-12NO7

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

VBO105-12NO7
Phase out

Rectifier				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSM }}$	max. non-repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1300	V
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse blocking voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1200	V
I_{R}	reverse current	$\begin{aligned} & V_{R}=1200 \mathrm{~V} \\ & V_{R}=1200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \nu}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=150^{\circ} \mathrm{C} \end{aligned}$			$\begin{array}{r} 100 \\ 2 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
$\overline{V_{F}}$	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.09 \\ & 1.24 \end{aligned}$	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.00 \\ & 1.19 \end{aligned}$	V V
$\overline{\text { dav }}$	bridge output current	$\begin{array}{ll} \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} & \\ \text { rectangular } & \mathrm{d}=0.5 \end{array}$	$\mathrm{T}_{\mathrm{v} s}=150^{\circ} \mathrm{C}$			100	A
$\begin{aligned} & \overline{V_{F 0}} \\ & \mathbf{r}_{\mathrm{F}} \end{aligned}$			$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$			$\begin{array}{r} 0.78 \\ 4.8 \end{array}$	
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case					0.8	K/W
$\mathbf{R}_{\text {thch }}$	thermal resistance case to heatsink				0.3		K/W
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			155	W
$\mathrm{I}_{\text {FSM }}$	max. forward surge current	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.50 \\ & 1.62 \end{aligned}$	kA kA
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.28 \\ & 1.38 \end{aligned}$	kA $k A$
12t	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} \mathrm{~J}}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 11.3 \\ & 10.9 \end{aligned}$	$\begin{aligned} & k A^{2} s \\ & k A^{2} s \end{aligned}$
		$\begin{aligned} & \hline \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 8.13 \\ & 7.87 \end{aligned}$	$\begin{aligned} & k A^{2} s \\ & k A^{2} s \end{aligned}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$		58		pF

PHASE OU'T

VBO105-12NO7
Phase out

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VBO105-12NO7	VBO105-12NO7	Box	10	470783

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} j}=150^{\circ} \mathrm{C}$

Rectifier

$\mathbf{V}_{0 \text { max }}$ threshold voltage $0.78 \quad \mathrm{~V}$
$\mathbf{R}_{0 \max }$ slope resistance * $3.6 \mathrm{~m} \Omega$

Outlines PWS-C

VBO105-12NO7
Phase out

Rectifier

Fig. 1 Forward current versus voltage drop per diode

Fig. 2 Surge overload current vs. time per diode

Fig. $3 I^{2}$ t versus time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 5 Max. forward current vs. case temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for $\mathrm{Z}_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{th}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.100	0.020
2	0.014	0.010
3	0.192	0.225
4	0.281	0.800
5	0.213	0.580

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IXYS:
VBO105-12NO7

